Modeling Bond Prices In Continuous-Time Part II - Solving For Risk-Free Bond Discount Rate

Gary Schurman, MBE, CFA

November, 2020

In this white paper we will build a model that calculates the unknown market discount rate applicable to a risk-free bond with a known market value.

Our Hypothetical Problem

The table below presents our go-forward model assumptions from Part I...

Table 1: Bond Assumptions

Symbol	Description	Balance
P_0	Market price at time zero	\$958.82
B	Bond face value	\$1,000.00
C	Annual coupon rate $(\%)$	4.50
T	Term in years (#)	3.00

We are tasked with answering the following questions:

Question 1: What is the continuous-time discount rate applicable to this risk-free bond?

Question 2: What is the yield to maturity and bond equivalent yield?

Bond Price Equations From Part I

In Part I we defined the variable P_0 to be the price at time zero of a coupon paying bond and the variable κ to be the continuous-time discount rate. Using Table 1 above the equation for bond price at time zero is... [1]

$$P_0 = \int_0^T C B \operatorname{Exp} \left\{ -\kappa u \right\} \delta u + B \operatorname{Exp} \left\{ -\kappa T \right\}$$
 (1)

The solution to Equation (1) above is... [1]

$$P_0 = B\left(C\kappa^{-1} - C\operatorname{Exp}\left\{-\kappa T\right\}\kappa^{-1} + \operatorname{Exp}\left\{-\kappa T\right\}\right)$$
 (2)

The equation for the first derivative of bond price with respect to discount rate from Part I is... [1]

$$\frac{\delta}{\delta\kappa} P_0 = B \left(C \frac{\delta}{\delta\kappa} \kappa^{-1} - C \frac{\delta}{\delta\kappa} \operatorname{Exp} \left\{ -\kappa T \right\} \kappa^{-1} + \frac{\delta}{\delta\kappa} \operatorname{Exp} \left\{ -\kappa T \right\} \right)$$
 (3)

The solution to Equation (3) above from Part I is... [1]

$$\frac{\delta}{\delta\kappa} P_0 = -B \left[C \left(1 + \text{Exp} \left\{ -\kappa T \right\} \left(1 + \kappa T \right) \right) \kappa^{-2} + T \text{Exp} \left\{ -\kappa T \right\} \right]$$
 (4)

Solving For The Discount Rate

We will define the variable r to be the actual discount rate (i.e. unknown to be solved for), the variable \hat{r} to be a guess discount rate, the function f(r) to be bond price at the actual discount rate (i.e. the observed bond price), the function $f(\hat{r})$ to be bond price at the guess discount rate, and the function $f'(\hat{r})$ to be the first derivative of bond price at the guess discount rate. Using these definitions we can solve for discount rate via the following Newton-Raphson method for solving nonlinear equations... [2]

$$\hat{r} + \frac{f(r) - f(\hat{r})}{f'(\hat{r})} = r + e \tag{5}$$

To solve for the actual discount rate we will come up with an initial guess rate and then iterate Equation (5) above until the error term e is zero (i.e. $r = \hat{r}$).

The Answer To Our Hypothetical Problem

Question 1: What is the continuous-time discount rate applicable to this risk-free bond?

Using Equations (2), (4) and (5) above the answer to our problem is...

Table 2: Newton-Raphson Solution

iteration	guess	f(guess)	f'(guess)	f(actual)		new guess
1	0.10000	857.45	-2388.69	958.82	=	0.05756
2	0.05756	965.39	-2704.83	958.82	=	0.05999
3	0.05999	958.84	-2685.64	958.82	=	0.06000
4	0.06000	958.82	-2685.58	958.82	=	0.06000
5	0.06000	958.82	-2685.58	958.82	=	0.06000

The discount rate used by the market to price this bond is 6.00%. We started with a guess rate of 10.00% and the solution took less than five iterations of the Newton-Raphson method to arrive at the actual rate of 6.00%.

Question 2: What is the yield to maturity and bond equivalent yield?

Using the answer to the question above the yield to maturity for this bond is...

$$YTM = Exp \{\kappa\} - 1 = Exp \{0.06000\} - 1 = 6.18\%$$
(6)

Using Equation (6) above the bond equivalent yield for this bond is...

BEY =
$$2 \times ((1 + YTM)^{0.5} - 1) = 2 \times ((1 + 0.0618)^{0.5} - 1) = 6.09\%$$
 (7)

Note: The bond pays coupon payments semi annually.

References

- [1] Gary Schurman, Modeling Bond Price in Continuous-Time Part I, November, 2020.
- [2] Gary Schurman, Newton-Raphson Method for Solving Nonlinear Equations Part I, October, 2009.